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Expansion and contraction of avalanches in the two-dimensional Abelian sandpile
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We present a detailed analysis of large scale simulations of avalanches in the two-dimensional Abelian
sandpile model. We compare statistical properties of two different decompositions of avalanches into clusters
of topplings and waves of topplings. Auxiliary critical exponents are introduced and the existence of the
exponent governing the contraction of avalanches claimed in our previous[Rezzhevet al, Phys. Rev.

Lett. 76, 2093(1996] is confirmed. We also give more elaborate argumentation for the exact values of the
exponents characterizing the statistics of way84063-651X98)05809-7

PACS numbd(s): 64.60.Lx

[. INTRODUCTION The main feature of the wave structure of avalanches is a
possibility to set up a one-to-one correspondence between
The sandpile model introduced by Bak, Tang, and Wie-waves and two-rooted spanning tr¢8% Using the spanning
senfeld[1] serves not only as a lapidary formulation of basictree representation for waves, one can apply the methods of
principles of self-organized criticalitySOQ but also seems graph theory to calculate the critical exponents of wave and
to be an appropriate candidate for exact determination of alhvalanche statistid®,10].
important critical exponents. Indeed, the first steps following  On the other hand, it has been found fLt,8] that the set
Dhar’s discovery 2] of the Abelian structure of the sandpile of waves and the set of clusters for a particular avalanche do
model were encouraging. They include determination of théyot coincide. Namely, waves have such an irrelevancy in
total number of allowed configurations in the recurrent statenejr superimposing that the next wave can overlap the pre-
[2], evaluation of the height probabiliti¢$,4] and height-  \iys one and the package of waves does not form embedded
height correlation function§3,15], and interpretation of the gets of sites like clusters. The observations of Dhar and
inverse Laplacian operatak "~ as an expected number of \;4nna111] and our simulations on small lattices raise hope

topplings at a given site due to a particle added to anothetrhat the overlappings of waves are relatively rare events. We

one [2]. Nevgrtheless,_ all analytlcal results obtained up tohave assumefiL0] that one can neglect the difference be-
now catch either static properties of the recurrent state or

diffusionli ) o ) tween clusters and waves of topplings and consider each next
iffusionlike dynamics of individual particles. The avalanche . . : N
dynamics as such, responsible for SOC, slips off the analyti\—N"’we embedded Into the previous one as a typical situation.
cal description even in the simplified limiting case of large Based on this "?‘SS“_”?D“O” we suggested a method of evalua-
avalanches. The main obstruction is that existing renormalfion Of the basic critical exponents of 2D ASM. Our latest
ization group method§6] neglect essential peculiarities of Simulations, however, have shown that the next wave typi-
the toppling process, and the complicated Spaﬁotemporég_ally oyerlaps the previous one. Moreover, the large-scale
structure of avalanches prevents exact evaluation of the critSimulations of Paczuski and Boettclé@] state that the av-
cal exponents. erage difference in size between two subsequent waves is
To advance the analysis of avalanche dynamics, variougctually negative.

decompositions of avalanches in the Abelian sandpile model Nevertheless, we will show in this paper that it is possible
(ASM) into more elementary objects have been proposed. It0o modify our simplified scenario of the avalanche process
particular, Grassberger and Manna noti€épthat each ava- and to describe the phases of expansion and contraction in
lanche can be represented as a set of embedded clusterstefms of the wave decomposition. Besides, we will demon-
sites related to a given number of topplings. To make use oftrate that the theoretical predictions are in complete agree-
this construction for determination of critical exponents it isment with the numerical data obtained by Paczuski and
desirable to obtain a dynamical procedure that naturally diBoettcher{12].
vides the avalanche into a collection of clusters. It means that The paper is organized as follows. In Sec. Il we formulate
due to the Abelian property of toppling operators, one can trithe ASM model, define avalanche clusters and waves of top-
to change the order of topplings so that each avalanchplings, and introduce the basic ideas of expansion and con-
would expand to the largest cluster and then contract byraction of avalanches. Section Il is devoted to the descrip-
smaller and smaller sets of toppling sites. In our previousion of the local dynamics of waves and a proof of the
works [8—10] we made such an attempt by proposing a de-existence of the contraction exponent. In Sec. IV we present
composition of avalanches into waves of topplings. analytical derivation of the exponents of conditional distri-

bution of waves obtained by Paczuski and BoettdHed|

from extensive numerical simulations. In Sec. V, an elucidat-

*Permanent address: Laboratory of Computing Techniques, JINRnNg point of view on the renormalization group appro&éh

Dubna 141980, Russia. to the sandpile model is suggested.
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Il. BASIC CONCEPTS To find critical exponents characterizing the size distribu-
tion of avalanches, one also needs a general picture of the
avalanche process as a whole. In the case of clusters, the
picture is quite clear. The set of clusters is ordered and each
next cluster is embedded into the previous one. However, the
clusters of topplings, being convenient for a computer de-
composition of avalanches, are hardly reproducible by dy-

1S unstte_lbk_a”e]m(tj toplplez;?zj —4j; whgretAtﬁ.tthetL.?plac— namical rules as each cluster grows monotonically during the
lan matrix. The toppling atmay cause instability at its near- 10 2 ajanche process.

est neighbors. The subsequent topplings continue until there On the contrary, the wave construction admits a simple
q e initiati hain of toopli d (ﬂ}namical interpretation but loses the property of ordering,
a random site, initiating a new chain ot topplings and S0 0Ny, ;e s inherent in the case of clusters. In spite of the ir-

The process of toppling during each perturbation is called al?egularity of waves, we are still able to use a partial ordering

avalanche and the. set of toppled sites forms a compact Clu%? waves assuming that a typical avalanche consists of two
ter of all toppled sites.

! . hases: fast expansion and slow contraction. The first phase
To obtain the wave decomposition of an avalangbg P P b

i . contains relatively few waves with a large negative differ-
one has to topple all sites that become unstable after addln(gqce between suﬁsequent Wavds,)=s —gs gThe sec
k) = Sk~ Sk+1- -

a particle afi, keeping .this .site oqt of the second _toppling. ond phase forms the main body of an avalanche with a posi-
T_he setw, of toppled sites is the first wave of topplmgs.'AII tive average differenca(s,)>0. In [10] the fast phase was

sites e|>f<ctﬁpt ma;l/?e tne_ srlflege:ome tstablle atu;]ter Fpethflrst associated with the single first wave which reaches at once a
wave. [ Ihe resulting neigre; one topples tné SIetne 1 vimal size the given avalanche spreads. The positive dif-
second time and continues the relaxation process, not PErMif ance for the rest of the waves was assumed to be depen-

ting th's. site to topple a third time. The new 3% qf e dent only on the size of a preceding wave and satisfied the
laxed sites is the second wave. The process continues ungl

We recall the definitions of the model, waves of top-
plings, and avalanche clusters and explain our basic ideas.
In 2D ASM one starts from the empty square lattioe-
cupation numberg; =0 for all sites and drops sand, particle
by particle, at random siteg;—z;+ 1. If any z;>4, the site

the sitei becomes stable and the avalanche stops. aling law

Grassberger and Mann@7] defined clustersC,,n (A(8))~5" 4)
=1,... M of sites toppled not less thantimes during the
given avalancheyl is the number of topplings at the initially for larges.

perturbed site. The se,,,n<M are all compact and each
C, contains the cluster§€,. 1, ... ,Cy.

It is possible to evaluate the asymptotics of cluster siz
distribution considering the set of generated clusters withou
reference to a particular avalanche they belong to. According
to [2], the expected number of topplings at sjtelue to
adding a particle at siteis given by the lattice Green func- ﬂz i (5)
tion Gij=[A*1]ij . The number of toppling$;; coincides ds, sg'
with the expected number of clustetg containing the sité¢
in an avalanche started atTherefore, the probability that By assumption, the density depends snbut not onS.
the linear extent of a cluster exceeds the distanie-j|  Then, the critical exponent in the distribution of a number
betweeni andj is of sites covered by an avalancR¢S)~S™" can be related

o with the exponentr in Eq. (4). Indeed, the probability dis-
Prol(r>i—j[)~G;;. () tribution of cluster size(s,) is proportional to the prob-

Using the known asymptotics of the Green function for Iargeablllty of ~avalanches = whose sizeS ~exceeds

. e TH1 B .
distancesG(r)~In(r) and compactness of clustefsluster St P(S>s¢)~s, and to the density of clusters E():

If the law Eq.(4) is valid for clusters of topplings as well,
the density of clusters can be defined as the average number
f clusters of size betwees, ands;+ds. in one avalanche
f the sizeS>s;:

areas.~r?), we get P(s)~s- s ©
C C C "
dr 1
P(sc) = P(V)EN e (20 Comparing Eq(6) with Eq. (2) we obtain
It was established if8] that every wave is a compact set T+a=2, (7)

without holes and each site in a wave topples exactly once in

that wave. Thus, the expected number of toppliGgsgiven  and the problem of finding the basic exponems reduced to

by the lattice Green function can be expressed alternativelg search for the exponeat which is related more directly to

by the probability that a wave taken from an arbitrary ava-details of the avalanche process.

lanche initiated at sité covers sitej. Writing Eq. (1) for The “contraction” exponentx is well defined for ava-

waves, we get again a size distribution similar to Ej, lanche clusters or for waves provided that one can neglect
the differences between these two kinds of objects. In this
connection, the following questions arise. Is it possible to

P(sw)~ S_N 3 define the “contraction” exponent for waves taking into ac-

count overlappings and, if so, what is the correspondence

wheres,, is the area of a wave. between its numerical values for clusters and waves? Can we
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FIG. 1. Sizess, of waves in a typical avalanche on the lattice of
sizelL?, L =500 (empty squardsthe same quantities subtracted by
the size of overlappings,— A~ (s,_1) (filled diamonds.

FIG. 2. The average values df (s),A*(s) for waves and
A(s) for clusters as functions of their size(see text for defini-
tions), obtained from the simulations data of®l@valanches on

. . . latti f sizeL=500. Th [\ is shifted vertically.
establish the same relation E) for waves and use their atice ot size e graphi(s) is shifted vertically

spanning tree structure to estimate the critical exponents abpplings using data of fOavalanches for the system size
the model? L =500(Fig. 2). The simulations show a power-law behavior
In the following sections we discuss these questions uUsingA (s,))~s® for clusters anc{A*(sk))~s“+ for waves; the
large scale simulations of clusters of topplings, a more elaboexponentsa and o* have close values. The value of the
rate analysis of waves, and numerical data for subsequegg(ponema—, for the relation (A~ (s))~s® , is much

waves obtained by Paczuski and BoettcHd]. smaller thana .
Concerning the estimation of the exponeatsa™, and
IIl. CONTRACTION EXPONENT FOR WAVES a”, we have to point out that the numerical determination of

these values is a rather difficult problem because of a slow
First, we present a picture of a typical avalanche of 2Dconvergence of data obtained for large lattices to their limit-
ASM on a square lattice of side? for L=500. In Fig. 1 we ing values. So, our numerical resutissa*~0.88 anda~
plot the sizes, of the wave as a function of its numblerin ~0.29 forL=500 are still far from the expected limit. The
the avalanche. We can see that many of the next waves hapgoblem of estimation of these exponents is somehow similar
a size greater than the size of the previous one. Moreovetp the numerical determination of the exponeritor discus-
even those waves, whose size is actually less than the size 8ibn, see, for exampl¢13]). The extrapolatio. — gives
its predecessor, are not most frequently embedded into thés some wide interval of possible values®fand a™ that
set of sites formed by the previous wave. For the particulaincludes 3/4, the theoretical predictigd0] for the exact
avalanche presented in Fig. 1 the event of overlapping thealue.
previous wave by the next one occurs for all waves except Being equivalent ta- from a computational point of view,
the sixth and the last one. the exponentx™ is more convenient for theoretical evalua-
Anyway, one can note that a typical avalanche containgions. The spanning tree representation of wd@snakes it
several sharp peaks corresponding to fast expansion of thgossible to interpreA *(s) as a sum of branches attached to
avalanche size and in-between intervals of relatively slowthe boundary of a wavgl0], and then to use exact results
although irregular, contraction. One may expect that the avebtained for theg-component Potts mod¢ll4] in the limit
erage difference between subsequent waves in the slog—0.
phase follows a scaling law similar to E@). To verify this, The relative magnitude af ~(s,) andA *(s,) is such that
one has to extract from the averagingXfs,) those waves for larges the contraction of avalanche dominates its expan-
that are related to the expansion phase. We can avoid thigon. We show in Fig. 1 by filled diamonds the sizes of
cumbersome and ambiguous procedure by introducing newavess, subtracted by the sizA " (s,_;). It is clear that
variables characterizing the “local” contraction and expan-neglecting the quantities ~ (s,) we do not change the quali-
sion. tative dynamical picture of the avalanche and the contraction
Consider two typical subsequent waves of topplitgs  of waves can be described in terms &f (s,). Based on
and Wy, ; with the sizess, ands,.,, the k+1)st wave these data we can also see that the avekdys,)) for
overlaps thekth wave. LetW be their intersection having waves, which is equal to the remaindgiA™(s,))
sizes. —(A(sy)), is actually negative for small waves and posi-
Define the variable\ *(s,)=s,—s and A" (s )=sy.; tive for large ones, as found j1.2].
—s; the first quantity is “local contraction,” the second one  Finally, we establish the relationship of the same type as
refers to “local expansion.” We calculated the averagesEg. (7) for the exponents anda™. Following argumenta-
(A(sy)) for clusters{A*(sy)) and(A~(sy)), for waves of tion for clustergSec. I), we estimate the known asymptotics
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FIG. 3. The expected numbéX(s,s—1)) of clusters(waves of
size from the intervals—t,s] provided that the size of the corre-
sponding avalanche is greater thenDue to fluctuations the data
for waves are uncertain for some large valuespf so the aver-

ages are not proportional.

of size distributionP(s,,) of waves Eq(3), which is propor-
tional to the probability of avalanches whose s&zexceeds

Sw , and to the density of waves

for large s,,>t. Take in Eq.(9) c(A"(s,)) instead oft
wherec=0(1) is a constant. Then, from E{) we obtain

For comparison in Fig. 3 we present the function
<N(Sc ysc_<A(Sc)>)>

for clusters, which also scales @§1), confirming Eq.(7).

IV. ANALYSIS OF CONDITIONAL WAVE DISTRIBUTION

7+1

P(S>sy)~sy

P(sw)~ Sy

ds, t

sols, T FUNGS,,  Sw— (A T (Sy)))).
In Fig. 3 we present the quantity
(N(sw . Sw=2(A"(sw))))

as a function ok, calculated from our numerical data where
we putc=2. It is apparently evident that asymptotically it
scales a©(1). Thus, we obtain from Eq10)

r+at=2.

T+1_911
ds,’

Let N(s,s—t) be the number of waves in a particular ava-

lanche with sizes betweesr-t ands provided that the size

of the given avalanche is greater than The asymptotic
behavior ofdn/ds, can be evaluated as

dn  (N(sy,sy—1))
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subsequent waves for a given size of the preceding wave
P(sk+1/SK). The data were represented by the scaling form

P(Sc+1/S0)~ S 4 (12)

Sk+1
Sk !

where F(x)—const whenx—0 and F(x>1)~x"". The
function P(s,.1|Si) being considered as a normalized distri-
bution of s, ; should be multiplied by the factsf * to
provide the normalization condition

Sco!

Sco col Sk s
Pn(Skt1ls)dscs 1= X“FE(x)dx, (13
wheres,,~L? is the cutoff in the wave sizes from the finite
system sizd12]. The normalized functioP (s, 1/Sc) has
the asymptotics

Pn(Sksals)~sc st t (14
whensy,1<<s,, and
Pu(Siealsi~scf st (15

whens, . {>sy.

To be consistent with the analysis[ib0], both exponents
B andr should be explained from the same point of view
based on the spanning tree representation of waves. Before
doing that, we will discuss an attempt to verify the existence
of the scaling law Eq(4) for the contraction phase of an
avalanche by calculating the average difference between sub-
sequent wavegA (s, ) ) ={sx—Sk+1) [12]. By the assumption
[10], the averagdA(s,))~s >0 for the main part of an
avalanche, corresponding to the process of slow contraction
of wave fronts. A serious problem, however, is how to select
the waves relating to the slow phase. In a real avalanche, at
least waves corresponding to the largest contribution to the
expansion should be removed from the averaging as ex-
plained in Sec. Il. Without the selection of waves responsible
for the contraction of avalanches the result of averaging of
As obtained in[12] is easily predictable.

Following [12], fix a values and take all waves witls,
=s together with the subsequent waves of sige; from all
avalanches whose siz&=s. Consider separately the cases
Sk+1<S¢ andsy, 1>sy. In the first case, the average differ-
ence(As )y =(s,— s, ;) is obviously(As(T))<s.

In the opposite case, the waves wih, ;>s, have a
power-law asymptotic® (s, 1)~ s/, where 1< <2 for
all s;. Indeed, the size distribution of waves with an arbi-
trary origin is P(s)~s~! according to the two-component
spanning tree representati@. The distribution of waves of
sizes with the origin in a fixed unique site B’ (s)~s 2. In
the considered case, the subsequent wave starts at a site in
the localized area inside the previous wave. This implies
1<6<2. Therefore, the averaged positive difference
(AsM)y=(s;—8,,1)~L22 9 —s and diverges with the lat-
tice sizeL. Thus,(As™)>(As(7)) until s becomes large
and finite-size effects become essential. We see that the
negative values ofAs(s,)) obtained in(12] are not actually
surprising and indicate only that the simple averddes)

Recently, Paczuski and Boettchigr?] have undertaken does not exhibit a power-law dependencesprand cannot

careful numerical simulations to find the size distribution ofbe related directly to the density of waves.
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) . L2
Pc(skﬂ):skfli sf ds~——. (19
SK>Sk41/C Sk+1

On the other handP.(sy.1) apart from the normalization
factor is given by a joined probability distribution of discon-
nected branche§, and T, ;. Despite the fact that subtrees
T, andT,,, are strongly connectedr(, is a part ofT,),

the distributions of their sizes can roughly be considered as
independent. Then, we obtain

1108 —11/8
Plast(sk+1)Plasl(sk>5k+1/C)—Sk+1i S T ds¢
SKk>Sk+1/¢

FIG. 4. The structure of spanning trees representing two subse-

quent waves with sizes,, 1<s,. The origin of the avalanche is 1
denoted byi. B is the point of intersection of the boundaries of N_S7/4 - (19
these waves. k+1

o , ) . To getP.(sc+1) from Eq.(19), we have to multiply the last
Nevertheless, the distribution EQ2) itself brings impor- oy hression bys, . ;, the number of possible positions of the
tant information about avalanches. The exponents charactefs: i inside the disconnected branch, ;. Finally

izing its asymptotics are related to basic exponents of th% (Sc 1)~1/s§’4 and comparing with Eq(18) we get 3
; o c\Sk+ +1
Ise?ddir? Ileton:ac:tji(rari.at?oerig\l\cl)’f miirp;isrﬁgrticgllj?/gtlitgf BIGUMEN- 314, which explains the numerical res{2].
Cor?sider first the exponedt. According to E ('12) this To relate the exponentwith the exponentr in the dis-
: poneyt. . 9 a1, tribution of a number of distinct sites covered by an ava-
exponent determines the behavior of smaller waves follow

ing iust after waves of larger sizes: . .<s,  The wavew. lanche, we consider waves of two types. A wave will be
9] 9 Ser 15 - k  referred to as the growing one or tewave ifs; . ;=s; and
can be represented by a tré@g¢ covering the area, and

: ; . - the reducing one or the wave ifs;, ;<s;. Every avalanche
having the roof at the point where the wawd/, was initi- : A
) corresponds to a unique sequenceésofvaves andR waves,
ated[9]. The treeT, ., representing the wawd/, , ; has the P q q

root at the same poirit €g.GRGGR ...
To provide the sharp reduction of the next wavg,and The number of distinct sites, in an avalanche is propor-

) . LR tional to the size of the maximal waw/,,,,, SO we can
Tk, 1 Must have a special structure. Since each site in a wavg

topples exactly once, the state of the system inside a WaveXpeCt that
does not change after the wave is completed. This means that

any branch ofT . ; attached to the roatrepeats a branch of P(Smax) ~

Ty until it ends insides, or touches the boundary &f,. It Smax
follows from s, , ;<<s, that at least one poir@ exists where

the boundaries ofV, and Wy, ; intersect(Fig. 4). In the  With the same critical exponent
vicinity of B, both treesT, and T, can be attached by a  The expected number of waves in an avalanche diverges
bondb to their complemented subtre® and T}, , [9] de- logarithmically with the lattice S|;E3]. However, if the idea
fined by the condition that a unificatiofi and T’ gives a about the fast_ expansion phase is correct, the_ expected num-
complete spanning tree of the whole lattice. Inversely, deleP€r of waves in the interval between the maximal wave and
tion of the bondb from the corresponding trees producesthe latest wavew, with s, ~O(1) before the maximal
subtreesT, and T, ;, which obey the statistics of discon- wave should be finite whebh— c.

(20

nected branches of lattice spanning tr¢&§] or, equiva- Starting with this assumption, consider a finite sequence
lently, the asymptotics of last wavg8] of n G waves ancR waves between the wavély ., and
Wiy+m= Winax (for simplicity, we denote their sizes by
S1, - . .,Sp)- The first and the last waves in the sequence are
Plas(S)~ RIS (16)  clearly of typeG. It follows from the numerical data ¢f.2]

that the asymptotics Eq$14) and (15 of the distribution
) ) function Py (s 1]S) are factorized. Extrapolating the distri-
It has been demonstrated ﬁﬂlZ] that the funCtIOI’]F(X) In bution Eq(15) to the case of Vanishing previous Wa\&§

Eq.(12) IS Constant_m ?‘f'”.'te interval 9x<c<1. Thus, we —1, we can obtain the distribution of first waves in the se-
can consider the distribution

quence:
P.(s = Pn(Sk+1/S)d 1 ~
(Sk+1) Lk>sk+1fc N(Sk+1/SK)ds (17) P(sy) sf”' (21)
with the functionPy(s,.1|sk) taken in the form Eq(14). For an avalanch&G, ... beginning from twds waves,

This gives the distribution of the second wave is given by
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S, tween two subsequent waves can be described by appropriate
P(Sz)=f ds,P(s;)Pn(S2lsy)- (220 variables that follow a power-law dependence on the wave
sizes. The exponentr™ corresponding to the contraction of
Using Eqgs.(15) and(21) we have for larges, waves can be related to one of the basic avalanche exponents
T.
Ins, The relation between the asymptotics Etf) of the dis-
P(s2)~ BT (23 tribution of subsequent wave,(S,.1|Sk) in the cases,
2 >s, and the exponent in the distribution of distinct sites
Similarly, the leading asymptotics for tiveh wave in a se- involved in an avalanche implies an alternative way of de-
quence ofn G waves is termining 7. Instead of derivationr from the analysis of
slow contraction process, we can use the statistics of large
(Ins,)" 1 waves W, ; overlapping their predecessow, to link =
P(SH)NW (24 with the exponentg andr. This approach sheds new light
n

on the renormalization groufRG) procedure proposed by
The presence dR waves reduces the logarithmic divergencePietroneroet al. [6] for the sandpile model. In the RG
of the numerator. For instance, using Et) and Eq.(15)  method, one deals with sites of three classes: stable, critical,
we get in the cas&RG, ... the numerator Iy instead of ~and unstable. Extending the characterization of the stationary
(Insy)? in the caseGGG, ... . Generally, itk (ksn—2)  Properties ata generic scale, one describes the propagation of

lastG waves in the sequence folloRwave, the convolution instability through the lattice taking into account only one-
shot relaxation events at each scale. Thus, proliferation ef-

fects due to multiple relaxations are not considered in this

P(Sn):f : J ds,---ds;-1P(s1) scheme. In this respect, the process described by RG is not a
true avalanche, rather it is a wave propagating from a given
X Pn(Sz]81) - - - Pn(SnlSn-1) (29 point or from a cluster of a given size. Correspondingly, the

critical exponent determined in this way is actually the sum

of exponentg3+r in the asymptotics of distribution of large
(Ins,)¥ waves. Its numerical value 1.248 obtained 1] is in ex-
(26)  cellent agreement with the valug-+r=5/4 proposed in
[12]. On the other hand, it was shown in Sec. IV tigatr
=7, which explains the validity of the RG approach despite
the neglect of multiple relaxations.

has the asymptotics

P(Sn) ~ ?
Thus, for any finite sequence & waves andR waves be-

tween the relatively smallkg)th wave and the maximal
wave, we have the leading exponeg®t-r, which governs

the distribution of the maximal WaveB na~Sma~Smay ' - ACKNOWLEDGMENTS
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