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Expansion and contraction of avalanches in the two-dimensional Abelian sandpile

D. V. Ktitarev1,* and V. B. Priezzhev2
1Theoretical Physics, FB 10, Gerhard-Mercator University, 47048 Duisburg, Germany

2Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia
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We present a detailed analysis of large scale simulations of avalanches in the two-dimensional Abelian
sandpile model. We compare statistical properties of two different decompositions of avalanches into clusters
of topplings and waves of topplings. Auxiliary critical exponents are introduced and the existence of the
exponent governing the contraction of avalanches claimed in our previous work@Priezzhevet al., Phys. Rev.
Lett. 76, 2093 ~1996!# is confirmed. We also give more elaborate argumentation for the exact values of the
exponents characterizing the statistics of waves.@S1063-651X~98!05809-7#

PACS number~s!: 64.60.Lx
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I. INTRODUCTION

The sandpile model introduced by Bak, Tang, and W
senfeld@1# serves not only as a lapidary formulation of bas
principles of self-organized criticality~SOC! but also seems
to be an appropriate candidate for exact determination o
important critical exponents. Indeed, the first steps follow
Dhar’s discovery@2# of the Abelian structure of the sandpi
model were encouraging. They include determination of
total number of allowed configurations in the recurrent st
@2#, evaluation of the height probabilities@3,4# and height-
height correlation functions@3,5#, and interpretation of the
inverse Laplacian operatorD21 as an expected number o
topplings at a given site due to a particle added to ano
one @2#. Nevertheless, all analytical results obtained up
now catch either static properties of the recurrent state
diffusionlike dynamics of individual particles. The avalanc
dynamics as such, responsible for SOC, slips off the ana
cal description even in the simplified limiting case of lar
avalanches. The main obstruction is that existing renorm
ization group methods@6# neglect essential peculiarities o
the toppling process, and the complicated spatiotemp
structure of avalanches prevents exact evaluation of the c
cal exponents.

To advance the analysis of avalanche dynamics, var
decompositions of avalanches in the Abelian sandpile mo
~ASM! into more elementary objects have been proposed
particular, Grassberger and Manna noticed@7# that each ava-
lanche can be represented as a set of embedded cluste
sites related to a given number of topplings. To make us
this construction for determination of critical exponents it
desirable to obtain a dynamical procedure that naturally
vides the avalanche into a collection of clusters. It means
due to the Abelian property of toppling operators, one can
to change the order of topplings so that each avalan
would expand to the largest cluster and then contract
smaller and smaller sets of toppling sites. In our previo
works @8–10# we made such an attempt by proposing a
composition of avalanches into waves of topplings.

*Permanent address: Laboratory of Computing Techniques, J
Dubna 141980, Russia.
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The main feature of the wave structure of avalanches
possibility to set up a one-to-one correspondence betw
waves and two-rooted spanning trees@8#. Using the spanning
tree representation for waves, one can apply the method
graph theory to calculate the critical exponents of wave a
avalanche statistics@9,10#.

On the other hand, it has been found out@11,8# that the set
of waves and the set of clusters for a particular avalanche
not coincide. Namely, waves have such an irrelevancy
their superimposing that the next wave can overlap the p
vious one and the package of waves does not form embed
sets of sites like clusters. The observations of Dhar a
Manna@11# and our simulations on small lattices raise ho
that the overlappings of waves are relatively rare events.
have assumed@10# that one can neglect the difference b
tween clusters and waves of topplings and consider each
wave embedded into the previous one as a typical situat
Based on this assumption we suggested a method of eva
tion of the basic critical exponents of 2D ASM. Our late
simulations, however, have shown that the next wave ty
cally overlaps the previous one. Moreover, the large-sc
simulations of Paczuski and Boettcher@12# state that the av-
erage difference in size between two subsequent wave
actually negative.

Nevertheless, we will show in this paper that it is possib
to modify our simplified scenario of the avalanche proce
and to describe the phases of expansion and contractio
terms of the wave decomposition. Besides, we will dem
strate that the theoretical predictions are in complete ag
ment with the numerical data obtained by Paczuski a
Boettcher@12#.

The paper is organized as follows. In Sec. II we formula
the ASM model, define avalanche clusters and waves of
plings, and introduce the basic ideas of expansion and c
traction of avalanches. Section III is devoted to the desc
tion of the local dynamics of waves and a proof of t
existence of the contraction exponent. In Sec. IV we pres
analytical derivation of the exponents of conditional dist
bution of waves obtained by Paczuski and Boettcher@12#
from extensive numerical simulations. In Sec. V, an elucid
ing point of view on the renormalization group approach@6#
to the sandpile model is suggested.

R,
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II. BASIC CONCEPTS

We recall the definitions of the model, waves of to
plings, and avalanche clusters and explain our basic ide

In 2D ASM one starts from the empty square lattice~oc-
cupation numberszi50 for all sites! and drops sand, particl
by particle, at random sites:zi→zi11. If any zi.4, the site
i is unstable and topples:zj→zj2D i j whereD is the Laplac-
ian matrix. The toppling ati may cause instability at its nea
est neighbors. The subsequent topplings continue until th
are no more unstable sites. Then, one adds again a partic
a random site, initiating a new chain of topplings and so
The process of toppling during each perturbation is called
avalanche and the set of toppled sites forms a compact c
ter of all toppled sites.

To obtain the wave decomposition of an avalanche@9#,
one has to topple all sites that become unstable after ad
a particle ati, keeping this site out of the second topplin
The setW1 of toppled sites is the first wave of topplings. A
sites except maybe the sitei become stable after the firs
wave. If the resulting heightzi.4 one topples the sitei the
second time and continues the relaxation process, not pe
ting this site to topple a third time. The new setW2 of re-
laxed sites is the second wave. The process continues
the sitei becomes stable and the avalanche stops.

Grassberger and Manna@7# defined clustersCn ,n
51, . . . ,M of sites toppled not less thann times during the
given avalanche,M is the number of topplings at the initiall
perturbed site. The setsCn ,n<M are all compact and eac
Cn contains the clustersCn11 , . . . ,CM .

It is possible to evaluate the asymptotics of cluster s
distribution considering the set of generated clusters with
reference to a particular avalanche they belong to. Accord
to @2#, the expected number of topplings at sitej due to
adding a particle at sitei is given by the lattice Green func
tion Gi j 5@D21# i j . The number of topplingsGi j coincides
with the expected number of clustersCn containing the sitej
in an avalanche started ati. Therefore, the probability tha
the linear extentr of a cluster exceeds the distanceu i 2 j u
betweeni and j is

Prob~r .u i 2 j u!;Gi j . ~1!

Using the known asymptotics of the Green function for lar
distancesG(r ); ln(r) and compactness of clusters~cluster
areasc;r 2), we get

P~sc!5P~r !
dr

dsc
;

1

sc
. ~2!

It was established in@8# that every wave is a compact s
without holes and each site in a wave topples exactly onc
that wave. Thus, the expected number of topplingsGi j given
by the lattice Green function can be expressed alternati
by the probability that a wave taken from an arbitrary av
lanche initiated at sitei covers sitej. Writing Eq. ~1! for
waves, we get again a size distribution similar to Eq.~2!,

P~sw!;
1

sw
, ~3!

wheresw is the area of a wave.
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To find critical exponents characterizing the size distrib
tion of avalanches, one also needs a general picture of
avalanche process as a whole. In the case of clusters
picture is quite clear. The set of clusters is ordered and e
next cluster is embedded into the previous one. However,
clusters of topplings, being convenient for a computer
composition of avalanches, are hardly reproducible by
namical rules as each cluster grows monotonically during
whole avalanche process.

On the contrary, the wave construction admits a sim
dynamical interpretation but loses the property of orderi
which is inherent in the case of clusters. In spite of the
regularity of waves, we are still able to use a partial order
of waves assuming that a typical avalanche consists of
phases: fast expansion and slow contraction. The first ph
contains relatively few waves with a large negative diffe
ence between subsequent wavesD(sk)5sk2sk11 . The sec-
ond phase forms the main body of an avalanche with a p
tive average differenceD(sk).0. In @10# the fast phase was
associated with the single first wave which reaches at on
maximal size the given avalanche spreads. The positive
ference for the rest of the waves was assumed to be de
dent only on the size of a preceding wave and satisfied
scaling law

^D~s!&;sa ~4!

for larges.
If the law Eq.~4! is valid for clusters of topplings as well

the density of clusters can be defined as the average num
of clusters of size betweensc andsc1dsc in one avalanche
of the sizeS.sc :

dn

dsc
5

1

sc
a

. ~5!

By assumption, the density depends onsc but not on S.
Then, the critical exponentt in the distribution of a number
of sites covered by an avalancheP(S);S2t can be related
with the exponenta in Eq. ~4!. Indeed, the probability dis-
tribution of cluster sizesP(sc) is proportional to the prob-
ability of avalanches whose size S exceeds
sc : P(S.sc);sc

2t11 and to the density of clusters Eq.~5!:

P~sc!;sc
2t11sc

2a . ~6!

Comparing Eq.~6! with Eq. ~2! we obtain

t1a52, ~7!

and the problem of finding the basic exponentt is reduced to
a search for the exponenta, which is related more directly to
details of the avalanche process.

The ‘‘contraction’’ exponenta is well defined for ava-
lanche clusters or for waves provided that one can neg
the differences between these two kinds of objects. In
connection, the following questions arise. Is it possible
define the ‘‘contraction’’ exponent for waves taking into a
count overlappings and, if so, what is the corresponde
between its numerical values for clusters and waves? Can
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PRE 58 2885EXPANSION AND CONTRACTION OF AVALANCHES IN . . .
establish the same relation Eq.~7! for waves and use thei
spanning tree structure to estimate the critical exponent
the model?

In the following sections we discuss these questions us
large scale simulations of clusters of topplings, a more ela
rate analysis of waves, and numerical data for subseq
waves obtained by Paczuski and Boettcher@12#.

III. CONTRACTION EXPONENT FOR WAVES

First, we present a picture of a typical avalanche of
ASM on a square lattice of sizeL2 for L5500. In Fig. 1 we
plot the sizesk of the wave as a function of its numberk in
the avalanche. We can see that many of the next waves
a size greater than the size of the previous one. Moreo
even those waves, whose size is actually less than the si
its predecessor, are not most frequently embedded into
set of sites formed by the previous wave. For the particu
avalanche presented in Fig. 1 the event of overlapping
previous wave by the next one occurs for all waves exc
the sixth and the last one.

Anyway, one can note that a typical avalanche conta
several sharp peaks corresponding to fast expansion o
avalanche size and in-between intervals of relatively slo
although irregular, contraction. One may expect that the
erage difference between subsequent waves in the
phase follows a scaling law similar to Eq.~4!. To verify this,
one has to extract from the averaging ofD(sk) those waves
that are related to the expansion phase. We can avoid
cumbersome and ambiguous procedure by introducing
variables characterizing the ‘‘local’’ contraction and expa
sion.

Consider two typical subsequent waves of topplingsWk
and Wk11 with the sizessk and sk11 , the (k11)st wave
overlaps thekth wave. LetW be their intersection having
sizes.

Define the variablesD1(sk)5sk2s and D2(sk)5sk11
2s; the first quantity is ‘‘local contraction,’’ the second on
refers to ‘‘local expansion.’’ We calculated the averag
^D(sk)& for clusters,̂ D1(sk)& and ^D2(sk)&, for waves of

FIG. 1. Sizessk of waves in a typical avalanche on the lattice
sizeL2, L5500 ~empty squares!; the same quantities subtracted b
the size of overlapping:sk2D2(sk21) ~filled diamonds!.
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topplings using data of 106 avalanches for the system siz
L5500~Fig. 2!. The simulations show a power-law behavi
^D(sk)&;sa for clusters and̂D1(sk)&;sa1

for waves; the
exponentsa and a1 have close values. The value of th
exponent a2, for the relation ^D2(sk)&;sa2

, is much
smaller thana1.

Concerning the estimation of the exponentsa, a1, and
a2, we have to point out that the numerical determination
these values is a rather difficult problem because of a s
convergence of data obtained for large lattices to their lim
ing values. So, our numerical resultsa'a1'0.88 anda2

'0.29 for L5500 are still far from the expected limit. Th
problem of estimation of these exponents is somehow sim
to the numerical determination of the exponentt ~for discus-
sion, see, for example,@13#!. The extrapolationL→` gives
us some wide interval of possible values ofa and a1 that
includes 3/4, the theoretical prediction@10# for the exact
value.

Being equivalent tot from a computational point of view
the exponenta1 is more convenient for theoretical evalu
tions. The spanning tree representation of waves@8# makes it
possible to interpretD1(s) as a sum of branches attached
the boundary of a wave@10#, and then to use exact resul
obtained for theq-component Potts model@14# in the limit
q→0.

The relative magnitude ofD2(sk) andD1(sk) is such that
for larges the contraction of avalanche dominates its exp
sion. We show in Fig. 1 by filled diamonds the sizes
wavessk subtracted by the sizeD2(sk21). It is clear that
neglecting the quantitiesD2(sk) we do not change the quali
tative dynamical picture of the avalanche and the contrac
of waves can be described in terms ofD1(sk). Based on
these data we can also see that the average^D(sw)& for
waves, which is equal to the remainder̂D1(sk)&
2^D2(sk)&, is actually negative for small waves and pos
tive for large ones, as found in@12#.

Finally, we establish the relationship of the same type
Eq. ~7! for the exponentst and a1. Following argumenta-
tion for clusters~Sec. II!, we estimate the known asymptotic

FIG. 2. The average values ofD2(s),D1(s) for waves and
D(s) for clusters as functions of their sizes ~see text for defini-
tions!, obtained from the simulations data of 106 avalanches on
lattice of sizeL5500. The graphD(s) is shifted vertically.
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of size distributionP(sw) of waves Eq.~3!, which is propor-
tional to the probability of avalanches whose sizeS exceeds
sw , P(S.sw);sw

2t11 , and to the density of waves

P~sw!;sw
2t11 dn

dsw
. ~8!

Let N(s,s2t) be the number of waves in a particular av
lanche with sizes betweens2t ands provided that the size
of the given avalanche is greater thans. The asymptotic
behavior ofdn/dsw can be evaluated as

dn

dsw
;

^N~sw ,sw2t !&
t

~9!

for large sw@t. Take in Eq. ~9! c^D1(sw)& instead of t
wherec5O(1) is a constant. Then, from Eq.~8! we obtain

sw
21;sw

2t2a111^N„sw ,sw2c^D1~sw!&…&. ~10!

In Fig. 3 we present the quantity

^N„sw ,sw22^D1~sw!&…&

as a function ofsw calculated from our numerical data whe
we put c52. It is apparently evident that asymptotically
scales asO(1). Thus, we obtain from Eq.~10!

t1a152. ~11!

For comparison in Fig. 3 we present the function

^N„sc ,sc2^D~sc!&…&

for clusters, which also scales asO(1), confirming Eq.~7!.

IV. ANALYSIS OF CONDITIONAL WAVE DISTRIBUTION

Recently, Paczuski and Boettcher@12# have undertaken
careful numerical simulations to find the size distribution

FIG. 3. The expected number^N(s,s2t)& of clusters~waves! of
size from the interval@s2t,s# provided that the size of the corre
sponding avalanche is greater thans. Due to fluctuations the data
for waves are uncertain for some large values ofsw , so the aver-
ages are not proportional.
f

subsequent waves for a given size of the preceding w
P(sk11usk). The data were represented by the scaling for

P~sk11usk!;sk11
2b FS sk11

sk
D , ~12!

where F(x)→const whenx→0 and F(x@1);x2r . The
function P(sk11usk) being considered as a normalized dist
bution of sk11 should be multiplied by the factorsk

b21 to
provide the normalization condition

Esco
PN~sk11usk!dsk115Esco /sk

x2bF~x!dx, ~13!

wheresco;L2 is the cutoff in the wave sizes from the finit
system size@12#. The normalized functionPN(sk11usk) has
the asymptotics

PN~sk11usk!;sk11
2b sk

b21 ~14!

whensk11!sk , and

PN~sk11usk!;sk11
2b2rsk

b1r 21 ~15!

whensk11@sk .
To be consistent with the analysis in@10#, both exponents

b and r should be explained from the same point of vie
based on the spanning tree representation of waves. Be
doing that, we will discuss an attempt to verify the existen
of the scaling law Eq.~4! for the contraction phase of a
avalanche by calculating the average difference between
sequent waveŝD(sk)&5^sk2sk11& @12#. By the assumption
@10#, the averagê D(sk)&;sk

a.0 for the main part of an
avalanche, corresponding to the process of slow contrac
of wave fronts. A serious problem, however, is how to sel
the waves relating to the slow phase. In a real avalanche
least waves corresponding to the largest contribution to
expansion should be removed from the averaging as
plained in Sec. II. Without the selection of waves responsi
for the contraction of avalanches the result of averaging
Ds obtained in@12# is easily predictable.

Following @12#, fix a values and take all waves withsk
5s together with the subsequent waves of sizesk11 from all
avalanches whose sizeS>s. Consider separately the cas
sk11,sk andsk11.sk . In the first case, the average diffe
ence^Ds(2)&5^sk2sk11& is obviously^Ds(2)&,s.

In the opposite case, the waves withsk11.sk have a
power-law asymptoticsP(sk11);sk11

2u where 1,u,2 for
all sk . Indeed, the size distribution of waves with an arb
trary origin is P(s);s21 according to the two-componen
spanning tree representation@9#. The distribution of waves of
sizes with the origin in a fixed unique site isP8(s);s22. In
the considered case, the subsequent wave starts at a s
the localized area inside the previous wave. This impl
1,u,2. Therefore, the averaged positive differen
^Ds(1)&5^sk2sk11&;L2(22u)2s and diverges with the lat-
tice sizeL. Thus, ^Ds(1)&.^Ds(2)& until s becomes large
and finite-size effects become essential. We see that
negative values of̂Ds(sk)& obtained in@12# are not actually
surprising and indicate only that the simple average^Ds&
does not exhibit a power-law dependence onsk and cannot
be related directly to the density of waves.
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Nevertheless, the distribution Eq.~12! itself brings impor-
tant information about avalanches. The exponents chara
izing its asymptotics are related to basic exponents of
sandpile model. Below, we present qualitative argume
leading to estimations of their numerical values.

Consider first the exponentb. According to Eq.~12!, this
exponent determines the behavior of smaller waves follo
ing just after waves of larger sizes:sk11!sk . The waveWk
can be represented by a treeTk covering the areask and
having the rooti at the point where the waveWk was initi-
ated@9#. The treeTk11 representing the waveWk11 has the
root at the same pointi.

To provide the sharp reduction of the next wave,Tk and
Tk11 must have a special structure. Since each site in a w
topples exactly once, the state of the system inside a w
does not change after the wave is completed. This means
any branch ofTk11 attached to the rooti repeats a branch o
Tk until it ends insidesk or touches the boundary ofsk . It
follows from sk11!sk that at least one pointB exists where
the boundaries ofWk and Wk11 intersect~Fig. 4!. In the
vicinity of B, both treesTk and Tk11 can be attached by
bondb to their complemented subtreesTk8 andTk118 @9# de-
fined by the condition that a unificationT and T8 gives a
complete spanning tree of the whole lattice. Inversely, de
tion of the bondb from the corresponding trees produc
subtreesTk and Tk11 , which obey the statistics of discon
nected branches of lattice spanning trees@15# or, equiva-
lently, the asymptotics of last waves@8#

Plast~s!;
1

s11/8
. ~16!

It has been demonstrated in@12# that the functionF(x) in
Eq. ~12! is constant in a finite interval 0,x,c,1. Thus, we
can consider the distribution

Pc~sk11!5E
sk.sk11 /c

PN~sk11usk!dsk ~17!

with the functionPN(sk11usk) taken in the form Eq.~14!.
This gives

FIG. 4. The structure of spanning trees representing two su
quent waves with sizessk11,sk . The origin of the avalanche is
denoted byi. B is the point of intersection of the boundaries
these waves.
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Pc~sk11!5sk11
2b E

sk.sk11 /c
sk

b21dsk;
L2b

sk11
b

. ~18!

On the other hand,Pc(sk11) apart from the normalization
factor is given by a joined probability distribution of discon
nected branchesTk andTk11 . Despite the fact that subtree
Tk andTk11 are strongly connected (Tk11 is a part ofTk),
the distributions of their sizes can roughly be considered
independent. Then, we obtain

Plast~sk11!Plast~sk.sk11 /c!5sk11
211/8E

sk.sk11 /c
sk

211/8dsk

;
1

sk11
7/4

. ~19!

To getPc(sk11) from Eq. ~19!, we have to multiply the last
expression bysk11 , the number of possible positions of th
root i inside the disconnected branchTk11 . Finally,
Pc(sk11);1/sk11

3/4 and comparing with Eq.~18! we get b
53/4, which explains the numerical result@12#.

To relate the exponentr with the exponentt in the dis-
tribution of a number of distinct sites covered by an av
lanche, we consider waves of two types. A wave will
referred to as the growing one or theG wave if si 11>si and
the reducing one or theR wave if si 11,si . Every avalanche
corresponds to a unique sequence ofG waves andR waves,
e.g.,GRGGR, . . . .

The number of distinct sitessd in an avalanche is propor
tional to the size of the maximal waveWmax, so we can
expect that

P~smax!;
1

smax
t

~20!

with the same critical exponentt.
The expected number of waves in an avalanche diver

logarithmically with the lattice size@3#. However, if the idea
about the fast expansion phase is correct, the expected n
ber of waves in the interval between the maximal wave a
the latest waveWk0

with sk0
;O(1) before the maximal

wave should be finite whenL→`.
Starting with this assumption, consider a finite seque

of n G waves andR waves between the wavesWk011 and

Wk01m5Wmax ~for simplicity, we denote their sizes b

s1 , . . . ,sn). The first and the last waves in the sequence
clearly of typeG. It follows from the numerical data of@12#
that the asymptotics Eqs.~14! and ~15! of the distribution
functionPN(sk11usk) are factorized. Extrapolating the distr
bution Eq.~15! to the case of vanishing previous wavessk0

→1, we can obtain the distribution of first waves in the s
quence:

P~s1!;
1

s1
b1r

. ~21!

For an avalancheGG, . . . beginning from twoG waves,
the distribution of the second wave is given by

e-
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P~s2!5Es2
ds1P~s1!PN~s2us1!. ~22!

Using Eqs.~15! and ~21! we have for larges2

P~s2!;
lns2

s2
b1r

. ~23!

Similarly, the leading asymptotics for thenth wave in a se-
quence ofn G waves is

P~sn!;
~ lnsn!n21

sn
b1r

. ~24!

The presence ofR waves reduces the logarithmic divergen
of the numerator. For instance, using Eq.~14! and Eq.~15!
we get in the caseGRG, . . . the numerator lns3 instead of
(lns3)

2 in the caseGGG, . . . . Generally, ifk (k<n22)
lastG waves in the sequence followR wave, the convolution

P~sn!5E •••E ds1•••dsn21P~s1!

3PN~s2us1!•••PN~snusn21! ~25!

has the asymptotics

P~sn!;
~ lnsn!k

sn
b1r

. ~26!

Thus, for any finite sequence ofG waves andR waves be-
tween the relatively small (k0)th wave and the maxima
wave, we have the leading exponentb1r , which governs
the distribution of the maximal wavesPmax;smax

2t ;smax
2b2r .

The numerical values obtained in@12# are b53/4,r 51/2.
This givest55/4 obtained in@10# from scaling arguments.

V. DISCUSSION

In conclusion, the analysis of the decomposition of a
lanches into waves of topplings shows that a difference
et

,

-
e-

tween two subsequent waves can be described by approp
variables that follow a power-law dependence on the w
sizes. The exponenta1 corresponding to the contraction o
waves can be related to one of the basic avalanche expon
t.

The relation between the asymptotics Eq.~15! of the dis-
tribution of subsequent wavesPN(sk11usk) in the casesk11
@sk and the exponentt in the distribution of distinct sites
involved in an avalanche implies an alternative way of d
termining t. Instead of derivationt from the analysis of
slow contraction process, we can use the statistics of la
waves Wk11 overlapping their predecessorsWk to link t
with the exponentsb and r. This approach sheds new ligh
on the renormalization group~RG! procedure proposed b
Pietronero et al. @6# for the sandpile model. In the RG
method, one deals with sites of three classes: stable, crit
and unstable. Extending the characterization of the station
properties at a generic scale, one describes the propagati
instability through the lattice taking into account only on
shot relaxation events at each scale. Thus, proliferation
fects due to multiple relaxations are not considered in t
scheme. In this respect, the process described by RG is n
true avalanche, rather it is a wave propagating from a gi
point or from a cluster of a given size. Correspondingly, t
critical exponent determined in this way is actually the su
of exponentsb1r in the asymptotics of distribution of larg
waves. Its numerical value 1.248 obtained in@16# is in ex-
cellent agreement with the valueb1r 55/4 proposed in
@12#. On the other hand, it was shown in Sec. IV thatb1r
5t, which explains the validity of the RG approach desp
the neglect of multiple relaxations.
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